fisica
Marisol Gómez 2ºC
sábado, 14 de agosto de 2010
diferencia entre masa y peso
La masa de un cuerpo es una propiedad característica del mismo, que está relacionada con el número y clase de las partículas que lo forman. Se mide en kilogramos (kg) y también en gramos, toneladas, libras, onzas, ...
El peso de un cuerpo es la fuerza con que lo atrae la Tierra y depende de la masa del mismo. Un cuerpo de masa el doble que otro, pesa también el doble. Se mide en Newtons (N) y también en kg-fuerza, dinas, libras-fuerza, onzas-fuerza, ...
El kg es por tanto una unidad de masa, no de peso. Sin embargo, muchos aparatos utilizados para medir pesos (básculas, por ejemplo), tienen sus escalas graduadas en kg en lugar de kg-fuerza. Esto no suele representar, normalmente, ningún problema ya que 1 kg-fuerza es el peso en la superficie de la Tierra de un objeto de 1 kg de masa. Por lo tanto, una persona de 60 kg de masa pesa en la superficie de la Tierra 60 kg-Fuerza. Sin embargo, la misma persona en la Luna pesaría solo 10 kg-fuerza, aunque su masa seguiría siendo de 60 kg.
Entonces, la masa no es lo mismo que el peso, que mide la atracción que ejerce la Tierra sobre una masa determinada.
Todos los cuerpos están hechos de materia. Algunos tienen más materia que otros. Por ejemplo, pensemos en dos pelotas de igual tamaño (igual volumen): una de golf (hecha de un material duro como el caucho) y otra de tenis (hecha de goma, más blanda).
Kilogramo patrón.
Aunque se vean casi del mismo tamaño, una (la de golf) tiene más materia que la otra.
Como la masa es la cantidad de materia de los cuerpos, diremos que la pelota de golf tiene más masa que la de tenis.
la masa (la cantidad de materia) de cada cuerpo es atraída por la fuerza de gravedad de la Tierra. Esa fuerza de atracción hace que el cuerpo (la masa) tenga un peso, que se cuantifica con una unidad diferente: el Newton (N).
La UNIDAD DE MEDIDA DEL PESO ES EL NEWTON (N)
Entonces, el peso es la fuerza que ejerce la gravedad sobre una masa y ambas magnitudes son proporcionales entre sí, pero no iguales, pues están vinculadas por el factor aceleración de la gravedad.
Para que entiendas que el concepto peso se refiere a la fuerza de gravedad ejercida sobre un cuerpo, piensa lo siguiente:
El mismo niño del ejemplo, cuya masa podemos calcular en unos 36 kilogramos (medidos en la Tierra, en una balanza), pesa (en la Tierra, pero cuantificados con un dinamómetro) 352,8 Newtons (N).
En la Luna, pesa seis veces menos.
Si lo ponemos en la Luna, su masa seguirá siendo la misma (la cantidad de materia que lo compone no varía, sigue siendo el mismo niño, el cual puesto en una balanza allí en la Luna seguirá teniendo una masa de 36 kilogramos), pero como la fuerza de gravedad de la Luna es 6 veces menor que la de la Tierra, allí el niño PESARÁ 58,68 Newtons (N)
Estas cantidades se obtienen aplicando la fórmula para conocer el peso, que es:
P = m • g
Donde
P = peso, en Newtons (N)
m = masa, en kilogramos (kg)
g = constante gravitacional, que es 9,8 en la Tierra (kg.m/s).
Estoy seguro de que todos se sorprenderán con que un niño de 7 años pese 352,8 Newtons, pero en física es así, ése es su peso.
Diferencia entre masa y peso
Características de masa
1-Es la cantidad de materia que tiene un cuerpo.
2-Es una magnitud escalar.
3-Se mide con la balanza.
4-Su valor es constante, es decir, independiente de la altitud y latitud.
5-Sus unidades de medida son el gramo (g) y el kilogramo (kg).
6-Sufre aceleraciones
caracteristicas del peso
1-Es la fuerza que ocasiona la caída de los cuerpos.
2-Es una magnitud vectorial.
3-Se mide con el dinamómetro.
4-Varía según su posición, es decir, depende de la altitud y latitud.
5-Sus unidades de medida en el Sistema Internacional son la dina y el Newton.
6-Produce aceleraciones.
Lo importante es que entiendas el concepto y la diferencia entre PESO Y MASA, aunque siempre sigas “pesándote” y creas que pesas, por ejemplo 50, 55 ó 60 kilos.
leyes de newton
Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton,son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo, en tanto que constituyen los cimientos no sólo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones... La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.
En concreto, la relevancia de estas leyes radica en dos aspectos:
Por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica;
Por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.
Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
Primera ley de Newton o Ley de la inercia
La primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.
Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él. Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.
Segunda ley de Newton o Ley de fuerza
La segunda ley del movimiento de Newton dice que
el cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos.
Tercera Ley de Newton o Ley de acción y reacción
Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en direcciones opuestas.La tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.[7] Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad y dirección, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y opuestas en dirección.strong>
martes, 6 de julio de 2010
velocidad: es el cuociente entre el desplazamiento y el tiempo en que se demora en desplazarse.La velocidad es una magnitud física de carácter vectorial que expresa el desplazamiento de un objeto por unidad de tiempo. Se la representa por o . Sus dimensiones son [L]/[T]. Su unidad en el Sistema Internacional es el m/s.
En virtud de su carácter vectorial, para definir la velocidad deben considerarse la dirección del desplazamiento y el módulo, al cual se le denomina celeridad o rapidez.
En virtud de su carácter vectorial, para definir la velocidad deben considerarse la dirección del desplazamiento y el módulo, al cual se le denomina celeridad o rapidez.
rapidez: es la representacion de un cuerpo en cuanto recorre
La rapidez o celeridad es la relación entre la distancia recorrida y el tiempo empleado en recorrerla. Su magnitud se designa como v. La celeridad es una magnitud escalar con dimensiones de [L]/[T]. La rapidez se mide en las mismas unidades que la velocidad, pero no tiene el carácter vectorial de ésta. La celeridad representa justamente el módulo de la velocidad.
Suscribirse a:
Entradas (Atom)